Thursday, 5 February 2015

Evolution of the decidua

In preparation for pregnancy, the endometrium undergoes a process called decidualization (previous post). This involves a change in the size, shape and properties of the connective tissue cells (stromal fibroblasts). Decidualization is a necessary prerequisite for implantation of the blastocyst and often occurs in response to an embryonic signal. In women, decidualization happens in response to a maternal signal in the second half of the menstrual cycle.
Decidua was present in the most recent common ancestor of placental
mammals but was lost in some lineages. Data from A. M. Mess and A. M. Carter
Based on a phylogenetic analysis (here), Andrea Mess and I concluded that decidualization was present in the most recent common ancestor of placental mammals (extant Eutheria). It was lost in some lineages, especially in those that evolved a non-invasive epitheliochorial placenta.

Gray Four-eyed Opossum (Philander opossum)
Wikimedia Commons CC-BY-3.0 (André de Souza Pereira)
How about marsupials, all of which have a yolk sac placenta? In most placentation is non-invasive and none has been shown to have a decidua. In the Gray Four-eyed Opossum (Philander opposum), however, there is penetration of the endometrium by trophoblast and traces of a primitive decidual reaction (here). This ties in quite nicely with a recent study (here) of gene expression in the endometrium of the Gray Short-tailed Opossum. This identified a population of endometrial stromal fibroblasts that expressed progesterone receptor and some transcription factors associated with human decidual cells. On the other hand, the fibroblasts did not express the decidual marker desmin or other transcription factors required for decidualization.

The authors of the latter paper are part of a consortium that just published an extensive analysis of gene expression by the endometrium across mammals (here). The study included a frog, chicken, lizard, monotreme (Duck-billed Platypus), marsupial (Gray Short-tailed Opossum), and seven different placental mammals. It identified a huge number of genes that were recruited during the evolution of pregnancy in mammals, including many that are associated with the decidualization process.

The main thrust of the new paper is the central role played in evolution by transposable elements. These were co-opted into regulatory elements that coordinate the endometrial progesterone response.

No comments:

Post a Comment